
Visualizing Regression Results with dotwhisker

Yeiyoung Choo

Spring 2023

In this module, we will learn how to create dot-and-whisker plots, which is one of the common ways to
visualize results from regression analysis. As we will see below, the plots show the point estimates of regression
coefficients as ‘dots’ and the confidence intervals of these estimates as ‘whiskers’.

We will use dotwhisker package introduced by Frederick Solt and Yue Hu in September 2021. The package
provides a quick and easy way to generate the coefficient plots we want; and pairs well with dplyr as it builds
on ggplot2 architecture. With dotwhisker, we can either use results directly from regression objects or tidied
results (broom::tidy()) stored in dataframes.

Load Packages

library(tidyverse)
library(dotwhisker)
library(broom)

Load Data
Let’s load the data we need for regression analysis. The data come from a study by Appel & Loyle (2012) on
post-conflict justice institutions (truth commissions in particular) and foreign direct investment. We will use
the results from our regression models to generate dot-and-whisker plots.
al2012 <- readRDS("al2012.rds") # data abridged and prepped for exercise

Approach 1: Using Results from Regression Objects as Input
Recall that the basic syntax for linear regression is lm(y ~ x, data = data). We use + to add predictors.
For example: lm(y ~ x1 + x2 + x3, data = data). Each model specifies what variables we use to predict
the outcome variable. We will store each model as a regression object. For example: m1 <- lm(y ~ x, data
= data). Because results stored within the objects, they are readily available when generating dot-and-whisker
plots.

Create a regression object
Here we will run our first regression model and store it as an object. Let’s call it m1. The outcome variable
is fdiflow, capturing inflows of foreign direct investment. The variable truthvictim is our key predictor,
which is implementation of a post-conflict justice institution. Check regression results using summary().
DV: foreign direct investment inflows
m1 <- lm(fdiflow ~ truthvictim + damage + duration +

peaceagr + victory, data = al2012)
summary(m1) #see regression results

1

##
Call:
lm(formula = fdiflow ~ truthvictim + damage + duration + peaceagr +
victory, data = al2012)
##
Residuals:
Min 1Q Median 3Q Max
-3907.0 -1163.3 -166.3 270.7 20834.2
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1418.32 510.04 2.781 0.00662 **
truthvictim 2590.53 844.96 3.066 0.00287 **
damage 10.01 10.59 0.946 0.34685
duration -25.54 42.52 -0.601 0.54959
peaceagr -2497.99 885.38 -2.821 0.00590 **
victory -1321.90 642.40 -2.058 0.04254 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2753 on 89 degrees of freedom
Multiple R-squared: 0.1529, Adjusted R-squared: 0.1053
F-statistic: 3.213 on 5 and 89 DF, p-value: 0.01031

Generate a dot-and-whisker plot
We now use dwplot() from dotwhisker package to generate a dot-and-whisker plot, specifying the regression
object in the parenthesis. The plot visualizes the regression results you saw above with summary(). Specifically,
the coefficient estimates on predictor variables are shown as dots. The horizontal line across the dot is the
whisker, which shows the 95% confidence interval of the coefficient estimate.
dwplot(m1) #intercept excluded by default

2

victory

peaceagr

duration

damage

truthvictim

−2500 0 2500
Note: When you use dwplot() directly with regression objects, the plot will exclude the intercept by default.
Because we use the dot-and-whisker plot to visualize coefficient estimates on predictor variables of interest,
we don’t need to show the intercept in our plot. If you want to include the intercept, you can set the
show_intercept argument as follows: dwplot(m1,show_intercept=TRUE).

Notice that coefficient estimates on damage and duration are hard to interpret from this plot, because of the
relative size of the estimates. The regression results from summrary() show that the coefficient estimates are
10.01 and -25.54 for them respectively, while others are at thousands, such as 2590.54 for truthvictim and
-2497.99 for peaceagr. While this concern is beyond the scope of today’s lesson, it is good to think about
how we can scale these variables in the first place to make coefficient estimates more comparable.

For example, Appel and Loyle (2012) additionally report the percentage change in FDI inflows with changes
in predictor variables. Holding others constant, what’s the percentage change in FDI inflows when we increase
conflict damage from the 25th to 75th percentile level? Or when we switch from not having post-conflict
institutions to having them in place? The percentage change estimates are 85 and 358, which are more
comparable than 10.01 and 2590.94 from above.

Create another regression object
Let’s run our second regression model. Again, store it as an object, calling it m2. The second model still
has the key predictor variable truthvictim, but uses political variables (political constraints and the polity
score) instead of conflict variables as controls.
DV: foreign direct investment inflows
m2 <- lm(fdiflow ~ truthvictim + polcon + polity2,

data = al2012)
summary(m2) #check results

##
Call:
lm(formula = fdiflow ~ truthvictim + polcon + polity2, data = al2012)

3

##
Residuals:
Min 1Q Median 3Q Max
-3578.5 -1015.7 -144.8 209.3 21085.1
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -632.59 459.17 -1.378 0.17168
truthvictim 1654.68 722.89 2.289 0.02439 *
polcon 4389.13 1366.29 3.212 0.00182 **
polity2 -99.64 61.24 -1.627 0.10718

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 2719 on 91 degrees of freedom
Multiple R-squared: 0.1555, Adjusted R-squared: 0.1277
F-statistic: 5.586 on 3 and 91 DF, p-value: 0.00146

Generate a dot-and-whisker plot
We use the object m2 to generate a dot-and-whisker plot. The plot shows coefficient estimates for the predictor
variables used in our Model 2.The coefficient estimate for truthvictim is different from what we had with
Model 1, but it is hard to draw the comparison when we generate plots separately.
dwplot(m2) #intercept excluded by default

polity2

polcon

truthvictim

0 2000 4000 6000

Note: dwplot() shows 95% confidence interval by default. We rarely need to adjust this setting, but you can
specify if you want to show 90% confidence interval for example: dwplot(m2, ci=.90).

4

Plot results from multiple regression models
Here we learn how to visualize results from multiple regression models in one plot. This allows us to easily
compare coefficient estimates across different models. First, we run regression models and save as objects.
m1 <- lm(fdiflow ~ truthvictim + damage + duration +

peaceagr + victory, data = al2012) #conflict variables
m2 <- lm(fdiflow ~ truthvictim + polcon + polity2,

data = al2012) #political variables
m3 <- lm(fdiflow ~ truthvictim + damage + duration +

peaceagr + victory + polcon + polity2, data = al2012) #all

Next, we use list() within dwplot() to create a single dot-and-whisker plot that shows regression results
from all of our models. Similar to a regression table that displays results from multiple models in different
columns, this plot shows coefficient estimates from all models as well as how some of the estimates vary
across them. Instead of numbers, we see dots-and-whisker. For example, we can easily see how the coefficient
estimate on truthvictim varies across three models.
dwplot(list(m1, m2, m3))

polity2

polcon

victory

peaceagr

duration

damage

truthvictim

−2500 0 2500 5000 7500

model

Model 1

Model 2

Model 3

Note that the plot gets crowded as we add more predictors. For effective visualization, it is a good idea to
focus on key variables. Often times, a coefficient plot like this complements a regression table, so the reader
can always find full results in the table. Let’s focus on truthvictim, which captures post-conflict justice
institutions, and peaceagr and polcon, the conflict and the political variables our analysis found to be
statistically significant. (Of course, what is considered important depends on the study and the researcher’s
point of view.)
dwplot(list(m1, m2, m3), vars_order = c("truthvictim",

"peaceagr", "polcon"))

5

polcon

peaceagr

truthvictim

−2500 0 2500 5000 7500

model

Model 1

Model 2

Model 3

Customize the plot
As with ggplot, we can customize the dot-and-whisker plot to enhance information and visuals. At minimum,
we want to select key variables, label our models and variables properly, and add information that makes it
clear what this plot shows.
plot1 <-

dwplot(list(m1,m2,m3),
model_order=c("Model 1","Model 2","Model 3"),
vars_order=c("truthvictim","peaceagr","polcon")) %>% #select, order variables

relabel_predictors(#relabel to spell out variable names
c(truthvictim="Truth Commission",

peaceagr="Peace Agreement",
polcon="Political Constraints")) +

theme_bw()+ #optional - cleaner background
xlab("Coefficient Estimate") + #label x-axis
ylab("") +
ggtitle("Post-Conflict Justice and Inward FDI") +
theme(legend.title=element_blank())

plot1

6

Political Constraints

Peace Agreement

Truth Commission

−2500 0 2500 5000 7500
Coefficient Estimate

Model 1

Model 2

Model 3

Post−Conflict Justice and Inward FDI

#Save plot as a PNG file
ggsave("dwplot1.png", plot1, width=6.5, height=4.5, dpi=400)
ggsave("your filepath/your filename.png"...)

Approach 2: Using Tidied Results as Input
The dwplot() can also take inputs from regression results stored in tidy dataframes. We use the tidy()
function in broom package to tidy results and store them in dataframes.

Tidy results from regression models
We use broom::tidy() to tidy regression results. Let’s call our tidy dataframes m1df, m2df, and m3df to
distinguish them from the regression objects.
m1df <- tidy(m1) #create a tidy dataframe from Model 1
m2df <- tidy(m2)
m3df <- tidy(m3)

Generate dot-and-whisker plots from tidy dataframes
Instead of regression objects, we now use tidy dataframes as input for dwplot(). We see that dwplot(m1df)
generates the same plot as dwplot(m1) except that it does not omit the intercept by default.
dwplot(m1df) #same as dwplot(m1)

7

victory

peaceagr

duration

damage

truthvictim

−2500 0 2500

dwplot(m2df)

polity2

polcon

truthvictim

0 2000 4000 6000

8

The tidy() function is useful when storing regression results for select variables. We can select variables
later when using dwplot(), but doing so here allows us to have concise dataframes as input. We use the
filter() function to choose or drop variables. (We could not do this with regression objects above, since
these are not dataframes.)
for example
m1df <- tidy(m1) %>%

filter(term != "(Intercept)") #drop intercept

Plot results from multiple regression models
Let’s replicate the final dot-and-whisker plot we had above by modifying our tidy dataframes first. We also
add a column called model to specify each model. This will identify our regression models when we combine
multiple tidy dataframes into one and use it as input for dwplot().
m1df <- tidy(m1) %>%

filter(term == "truthvictim" | term == "peaceagr") %>%
mutate(model = "Model 1")

m2df <- tidy(m2) %>%
filter(term == "truthvictim" | term == "polcon") %>%
mutate(model = "Model 2")

m3df <- tidy(m3) %>%
filter(term == "truthvictim" | term == "peaceagr" |

term == "polcon") %>%
mutate(model = "Model 3")

Use the rbind() function to merge tidy dataframes together into one dataframe.
models <- rbind(m1df, m2df, m3df) #merge dataframes

Generate a dot-and-whisker plot for all regression models, displaying key variables of interest. Remember we
have selected variables already.
dwplot(models)

9

polcon

peaceagr

truthvictim

−2500 0 2500 5000 7500

model

Model 1

Model 2

Model 3

In-Class Exercise: Customizing a dot-and-whisker plot
Let’s customize the plot we just generated with our final tidy dataframe. Try to replicate the plot you
saved above (dwplot1.png), first starting with plot 2 <- to store the plot as an object. Save the plot as
dwplot2.png. (Bonus: Add a dotted vertical line where x-intercept is 0.)
plot2 <- dwplot(models,

model_order=c("Model 1","Model 2","Model 3"),
vars_order=c("truthvictim","peaceagr","polcon")) %>%

relabel_predictors(
c(truthvictim="Truth Commission",

peaceagr="Peace Agreement",
polcon="Political Constraints")) +

theme_bw()+
xlab("Coefficient Estimate") +
ylab("") +
geom_vline(xintercept = 0, #add a vertical line across 0

colour = "grey40",
linetype = 2) +

ggtitle("Post-Conflict Justice and Inward FDI")+
theme(legend.title=element_blank())

plot2

10

Political Constraints

Peace Agreement

Truth Commission

−2500 0 2500 5000 7500
Coefficient Estimate

Model 1

Model 2

Model 3

Post−Conflict Justice and Inward FDI

ggsave("dwplot2.png", plot2, width=6.5, height=4.5, dpi=400)

Adding a vertical line across zero is useful, especially when we have coefficient estimates of opposite signs
(i.e. positive and negative). The plot clearly shows our finding that implementing a post-conflict justice
institution is associated with higher levels of FDI inflows, or that the effect of implementing a post-conflict
justice institution is positive on attracting inward FDI.

11

	Load Packages
	Load Data
	Approach 1: Using Results from Regression Objects as Input
	Create a regression object
	Generate a dot-and-whisker plot
	Create another regression object
	Generate a dot-and-whisker plot
	Plot results from multiple regression models
	Customize the plot

	Approach 2: Using Tidied Results as Input
	Tidy results from regression models
	Generate dot-and-whisker plots from tidy dataframes
	Plot results from multiple regression models

	In-Class Exercise: Customizing a dot-and-whisker plot

